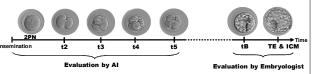
OTTAWA FERTILITY CENTRE CENTRE DE FERTILITÉ D'OTTAWA

Time-lapse KIDScore Day 5 can be used as a primary marker to predict embryo pregnancy potential in fresh and frozen single embryo transfers


Alina Tartia¹, Clara Wu^{1, 2}, Samantha Torrance¹, Jenna Gale^{1, 2}, Lina Al-Qahwaji¹ and Marie-Claude Léveillé^{1, 2}

¹Ottawa Fertility Centre, ²University of Ottawa, Ottawa, Canada

Introduction

Time-lapse (TL) studies and the recent introduction of Artificial Intelligence (AI) to conduct complex multi-parameter analyses of embryo development, eliminate human subjectivity and streamline the selection decision for the embryo with best potential for pregnancy. Utilization of KIDScore Day 5 (KIDS5), an Al generated multi-variable morphokinetic score (1 to 10, 10 being best), has shown promise in decreasing the number of embryo transfer attempts and the time to pregnancy.

Variables included in the morphokinetic score KIDS5

Aim of the study: Determine whether the KIDS5 can be used as a primary marker for selecting the best embryo for fresh and frozen single embryo transfers.

Methods

- > Retrospective cohort study of consecutive cycles conducted between May 2019 and April 2021.
- > Single embryo transfer cycles with either fresh or frozen expanded Day 5 blastocysts.
- > Embryo culture in TL incubator EmbryoScope Plus (Vitrolife, Sweden).
- > The morphokinetic analysis of embryos achieved by assessing the images captured by the EmbryoScope Plus (Vitrolife, Sweden), every 10 min in seven focal planes.
- > Selection for transfer or cryopreservation based on Gardner morphological scoring system.
- > Embryo annotation and computation of the KIDS5 v3 score (Vitrolife, Sweden) performed retrospectively (corresponding to the time of transfer for fresh ET and corresponding to the time of freezing for frozen ET).
- \succ Exclusion criteria: cycles with surgically retrieved sperm, endometrial factors, PGT.
- > Clinical outcomes measured: implantation rate, viable pregnancy rate.
- > Statistical tests: Pearson correlation coefficient (p), Area Under the Curve (AUC).

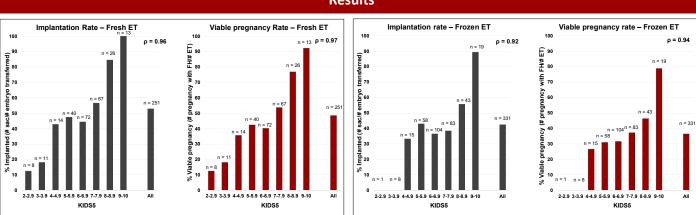
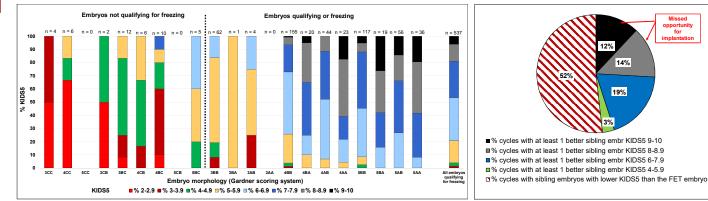
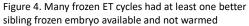



Figure 1. KIDS5 positively correlates with Implantation and Viable pregnancy rates for fresh FT


Figure 2. KIDS5 positively correlates with Implantation and Viable pregnancy rates for frozen FT

Outcome tested	Implantation - Fresh ET	Viable pregnancy - Fresh ET	Implantation - Frozen ET	Viable pregnancy - Frozen ET
AUC	0.7	0.7	0.6	0.6

Table 1. KIDS5 performance in predicting implantation and viable pregnancy for fresh and frozen ET cycles

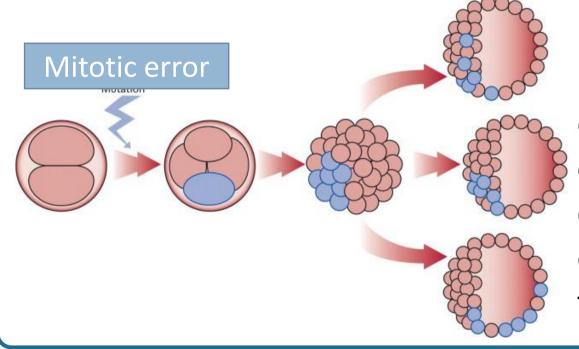
14%

19%

Conclusions

- KIDS5 is a good predictor of embryo implantation and viable pregnancy in both fresh and frozen ET cycles.
- A lack of concordance was observed between embryo morphology and KIDS5.
- For many frozen ET cycles, a sibling embryo with a better KIDS5 was not selected for transfer, suggesting a missed opportunity for potential implantation.

Results


Static Morphology of Mosaic Embryos is a Prognostic Factor of Transfer Outcome

Obstetrics & Gynaecology Mitko Madjunkov^{1,2}, Hanna Balakier¹ Rina Abramov¹, Ran Antes¹, Siwei Chen¹, Svetlana Madjunkova^{1,3}, Clifford Librach^{1,2,4,5} UNIVERSITY OF TORONTO

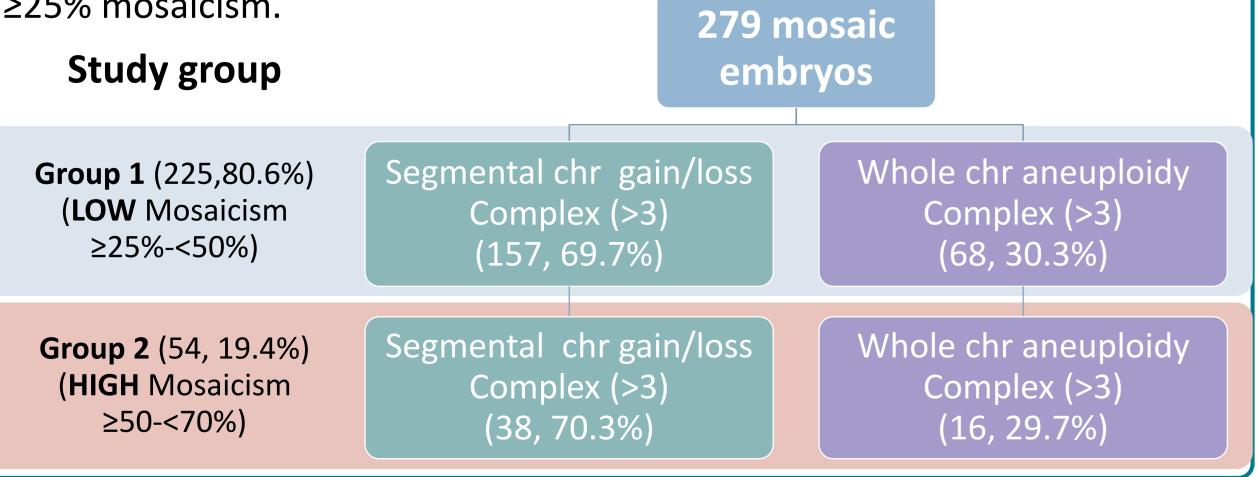
¹CReATe Fertility Centre, Toronto, Canada; ²Department of Obstetrics and Gynecology, ³Department of Physiology, ⁵Institute of Medical Sciences, University of Toronto.

INTRODUCTION

Preimplantation genetic testing for chromosomal aberrations (PGT-A) using NGS in IVF has increased rates of implantation per transfer, but at the same time has increased mosaic embryo detection to ~20% of all tested embryos. The current recommendation is to consider mosaic embryos for transfer if there are no euploid embryos remaining. Evidence is still limited on the developmental potential, implantation and birth outcomes of mosaic embryos. Some studies suggested that level and type (segmental or all chromosome aberrations) may determine the implantation potential of mosaic embryos.

Figure 1: Mosaicism in embryos.

Presence of two or more cell lines of different genotype within the same embryo occurring as a result of mitotic error in cell divisions. Extend and degree of mosaicism depend on timepoint of defective event and type of error.


OBJECTIVE

To evaluate the implantation and pregnancy outcomes after mosaic embryo transfer detected at NGS resolution and relationship between the static morphology and implantation/ongoing pregnancy of mosaic

MATERIALS AND METHODS

This is a single centre retrospective cohort study where we analysed the PGT-A results from 13,336 TE biopsies and clinical outcomes from 279 single mosaic embryo transfers.

NGS analysis was performed using VeriSeq (Illumina) kits with BlueFuse software. The sensitivity for mosaicism detection was established at 20%, and aberrations considered clinically relevant were ≥10Mb in size and with ≥25% mosaicism.

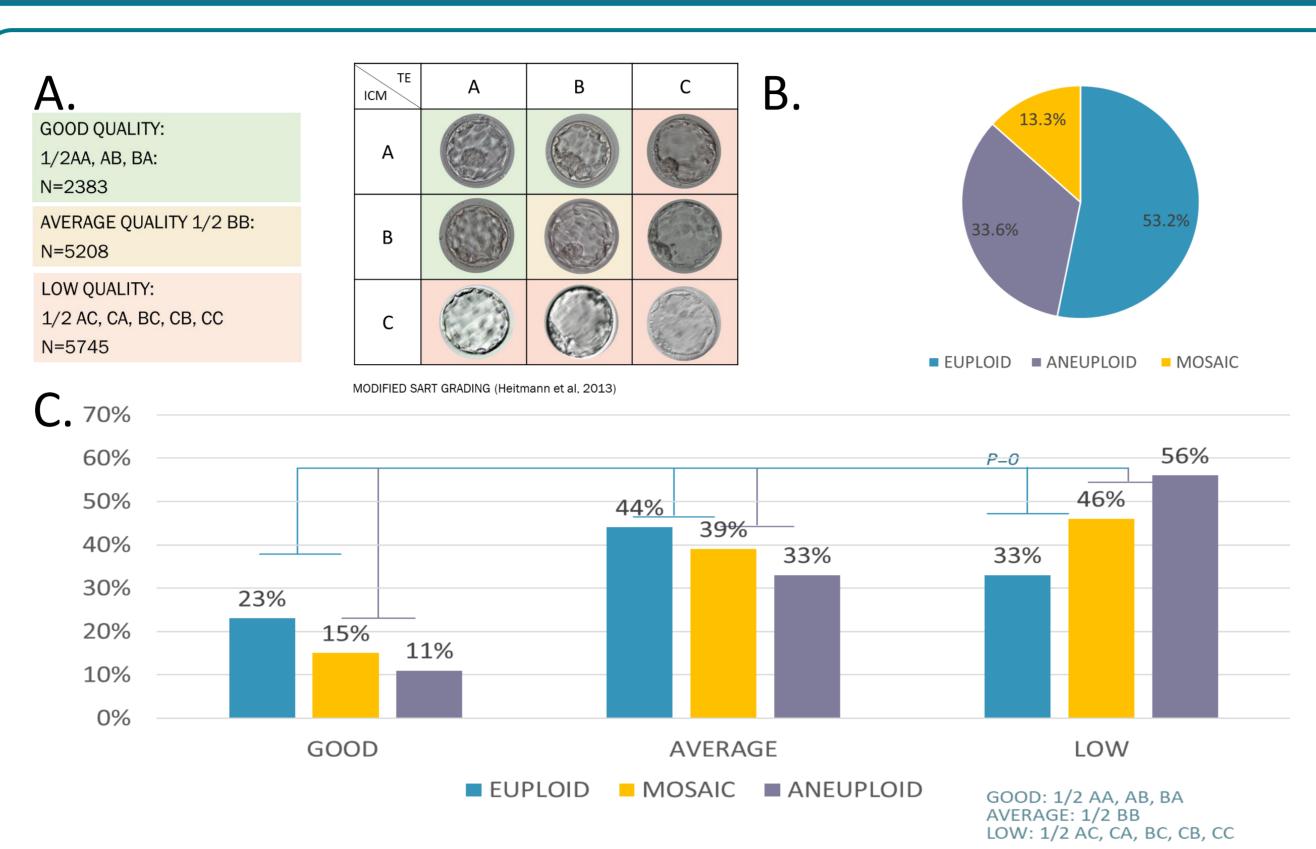


Figure 2: Static morphology grading and PGT-A results of 13336 analyzed embryo grade.

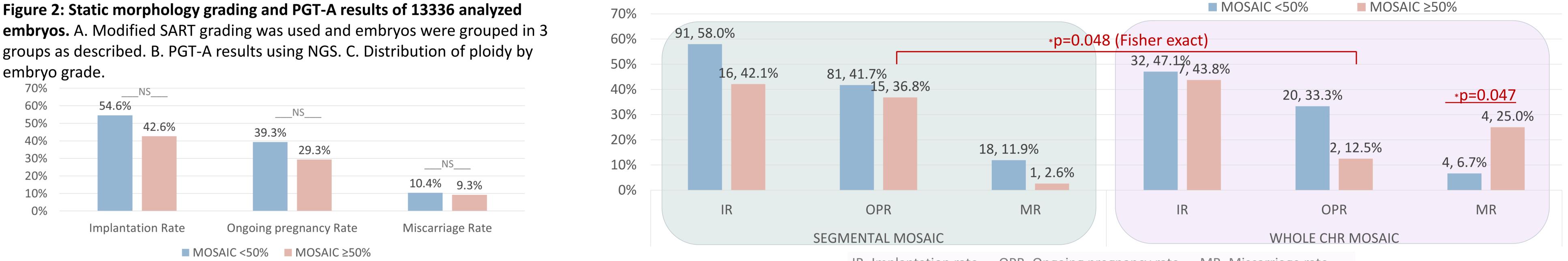
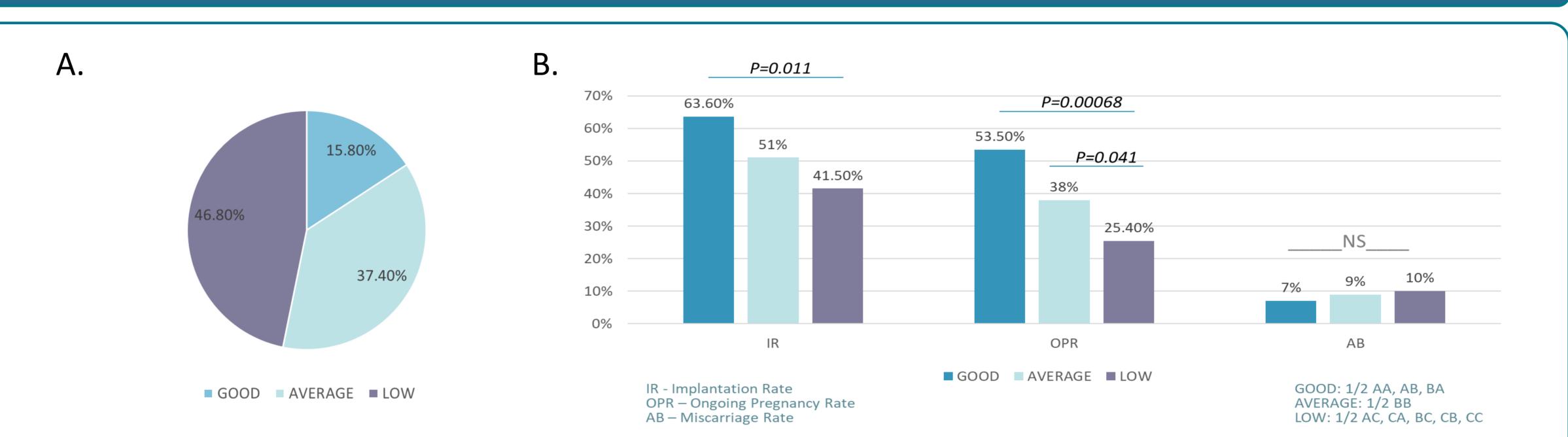



Figure 3: Level of mosaicism is not associated with pregnancy outcomes of 279 mosaic embryo transfers. Overall implantation rate for mosaic embryos was 52.3% There was no statistical difference between Group 1 (Low mosaicism) and Group 2 (HIGH mosaicism) in embryo implantation rate, ongoing pregnancy rate or miscarriage rate. Healthy babies were delivered from 72 available birth outcomes.

CONCLUSION

Good static morphological grade is associated with higher IR and OPR of mosaic embryos. Assessment of morphokinetic parameters of mosaic embryos is Our results indicate that static morphological grade should be considered in selection of mosaic currently in progress to complement this study. embryos for transfer. Our findings provide evidence that the majority of mosaic embryos that Further studies are needed to fully determine the impact of implant will develop into healthy babies and supports the hypothesis that low level mosaicism in specific mosaic chromosomal aberrations on pregnancy outcome early embryonic development may be a physiological phenomena. and birth outcome.

RESULTS

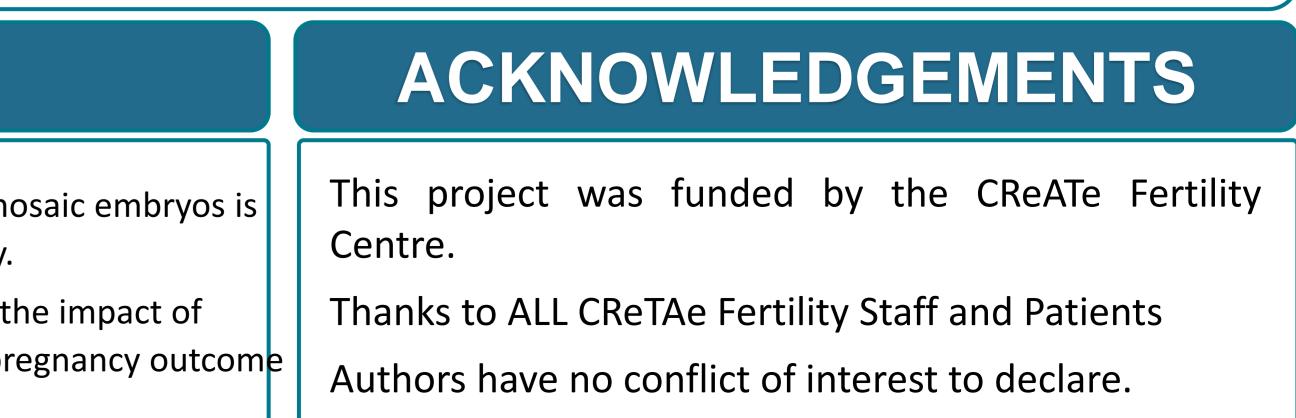
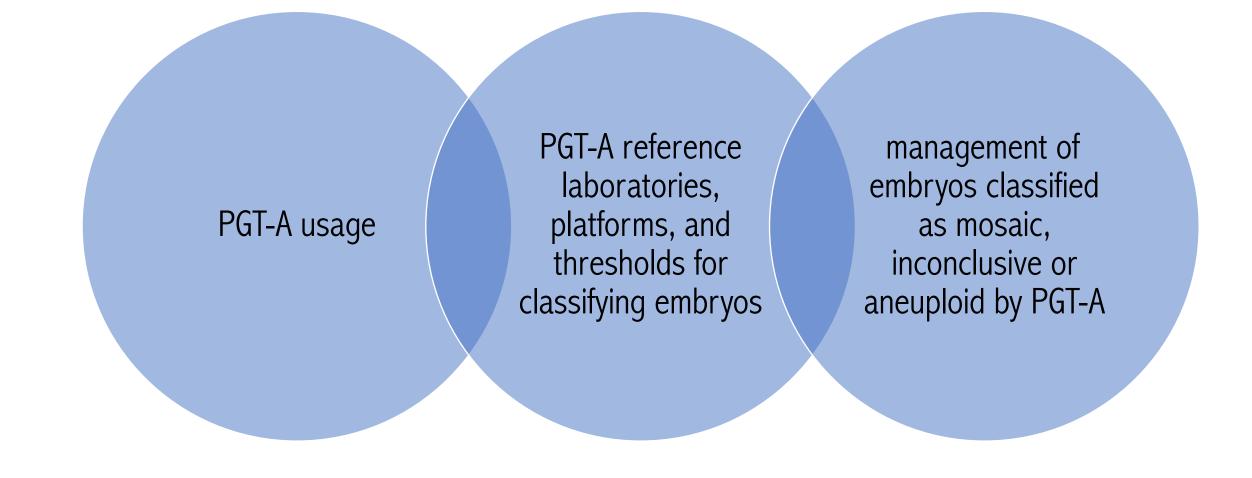

Figure 4: A. Morphology grade of 279 transferred mosaic embryos. B. Pregnancy outcomes by static morphology grade. Mosaic embryos with Good morphology grade had higher implantation rate (IR) and ongoing pregnancy rate (OPR) compared to mosaic embryos with Poor morphology (IR, p=0.011, OR 2.4, 95%CI[1.2-4.9]; OPR p=0.000687, OR 3.378, 95%CI[1.642-6.948]).

Figure 5: Pregnancy outcomes by level and type of mosaicism. Whole chromosome ≥50% mosaicism (Group 2) is associated with higher miscarriage rate (p=0.047). Segmental chr mosaics ≥50% (Group 2) have higher ongoing pregnancy rate compared to whole chr mosaicism ≥50% (Group 2). There was no statistical difference between pregnancy outcomes of segmental chr aberrations in Group 1 and Group 2.

Future Directions:

IR=Implantation rate OPR=Ongoing pregnancy rate MR=Miscarriage rate



Introduction :

- Up to 36% of IVF cycles in Canada are initiated with the intention of performing PGT-A¹
- PGT-A is a screening test with limitations such as technical errors, embryonic mosaicism and sampling bias²
- PGT-A results include euploid, mosaic, aneuploid and inconclusive
- No consensus on management of non-euploid embryos

Materials and Methods

- cross-sectional survey with unique access link sent by email to medical directors of all Canadian fertility clinics with an independent IVF embryology laboratory
- Hosted on SimpleSurvey and available online from June to August 2020
- Designed to determine practice patterns with respect to

Statistical Analysis

- Number of participants who provided consent was used to determine the response rate
- Fisher's exact tests were performed to examine the associations between clinical and laboratory factors and transferring of non-euploid embryos
- Wilcoxon rank sum tests or Kruskal-Wallist tests were used to compare continuous variables between groups

Conclusions:

- High utilization rate of PGT-A
- Most commonly offered for RPL, RIF; 45% offer routinely to all patients
- Majority of clinics have or would consider mosaic embryo transfer
- Prenatal screening (NIPT) often recommended after mosaic embryo transfer; diagnostic genetic testing recommended less often

NATIONAL SURVEY ON THE MANAGEMENT OF NON-EUPLOID EMBYROS

Crystal Chan, MD FRCSC, Shirin Dason, MD, Rhonda Zwingerman, MD FRCSC, TianTian Li, PhD, David Gurau, MD FRCSC, Heather Shapiro, MD, FRCSC, Meivys Garcia, MD FRCSC, Marta Wais, MD FRCSC, Ruth Ronn, MD FRCSC, Rong Huang, PhD, Zong Cheng Luo, PhD, Paul Chang, MD FRCSC THE GTA REI NETWORK OF INVESTIGATORS)

Aim:

• Comprehensively describe current PGT-A practices and management of screened noneuploid embryos in Canada

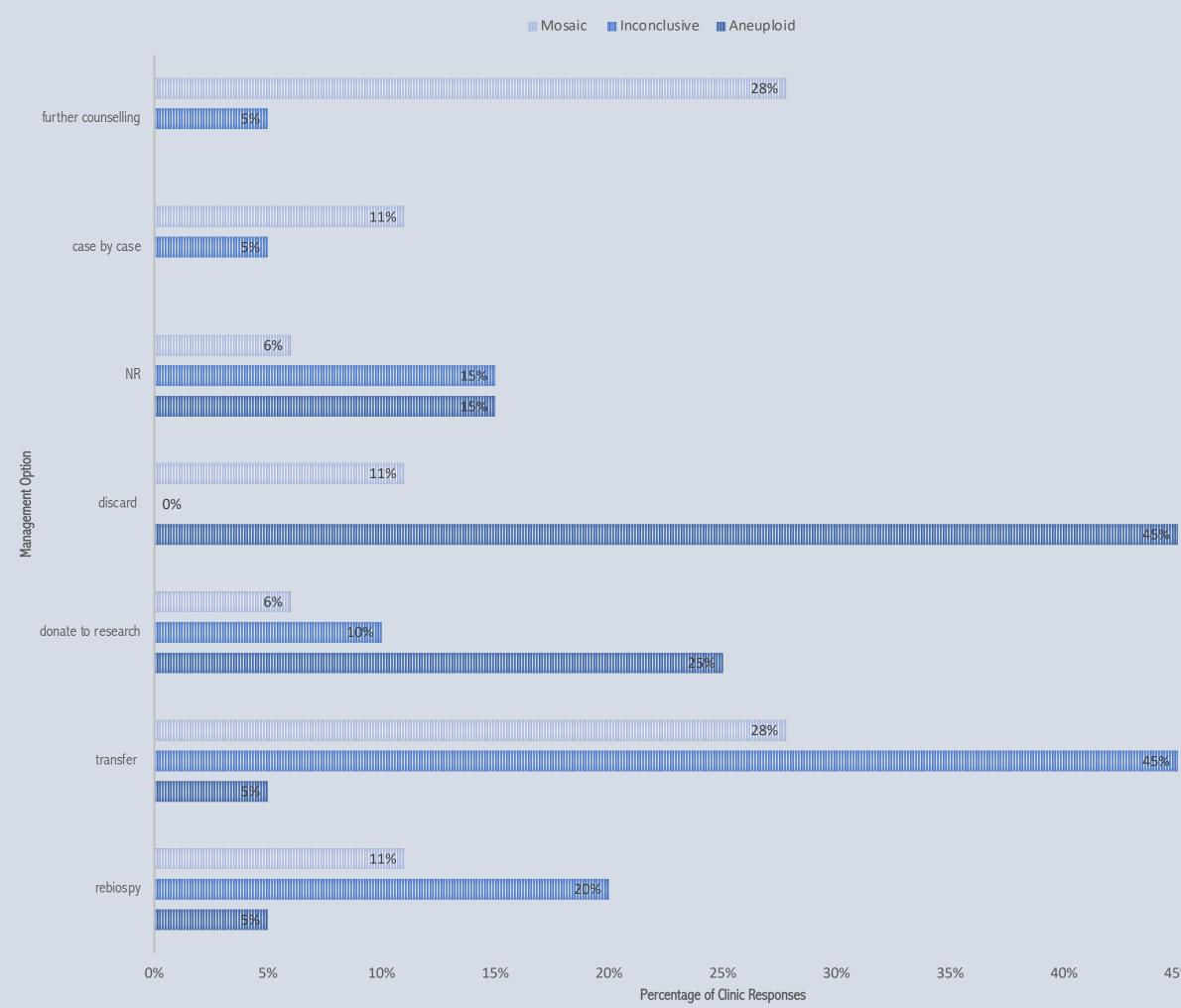
Demographics :

- Survey sent to 37 IVF clinics, with 2 clinics being represented by the same medical director
- 25 participated in the survey, response rate of 69%
- 22 completed the survey, completion rate of 88%
- 20 clinics performed PGT-A
- 18 clinics received mosaicism data

Characteristic	n	%
Province of Practice		
- Ontario	10	45
- Manitoba	1	5
- Nova Scotia	1	5
- Quebec	4	18
- British Columbia	4	18
- Saskatchewan	1	5
- Alberta	1	5
Practice Type		
- Academic	4	18
- University-affiliated	7	32
- Private	11	50
Annual number of IVF cycles for clinics performing PGT-A		
- Under 500	9	45
- 500-999	3	15
- 1000-1499	7	35
- No response	1	5
Percentage of cycles including PGT-A		
- Less than 10%	3	15
- 10-29%	7	35
- 30-49%	7	35
FOO or more	2	10
- 50% or more		

TABLE 1: DEMOGRAPHICS OF PARTICIPANTS

References


1. 2019 Canadian Fertility and Andrology Society (CFAS) Report on Canadian Assisted Reproduction Registry (CARTR) Outcomes. https://cfas.ca/_Library/CARTR/2019_CARTR_Press_Release_PDF.pdf; 2019.

2. Chan C, Ryu M, Zwingerman R. Preimplantation genetic testing for aneuploidy: A Canadian Fertility and Andrology Society Guideline. Reprod Biomed Online. 2020.

3. Kim TG, Neblett MF, Shandley LM, Omurtag K, Hipp HS, Kawwass JF. National mosaic embryo transfer practices: a survey. Am J Obstet Gynecol. 2018;219(6):602 e1- e7.

Results : 61% of clinics have transferred at least one mosaic embryo 94% of clinics would consider transfer of a mosaic embryo 50% of clinics have transferred at least one inconclusive embryo 5% of clinics have transferred at least one aneuploid embryo 15% of clinics would consider transfer of an aneuploid embryo Figure 1. INDICATIONS FOR PGT-A TESTING Patients over 35 Unexplained Infertility under age 30 5% Fertility Preservation Routine Screening Advanced reproductive Ag Balanced Translocation Recurrent Pregnancy Los

FIGURE 2: RECCOMENDED MANAGEMENT OPTION PROVIDED TO PATIENT BY CLINICS ACCORDING TO PGT-A BIOPSY RESULTS

Clinics who performed more than 1000 cycles were more likely to have transferred a mosaic embryo

Clinics who used less PGT-A per cycle were more likely to have transferred a mosaic embryo

TABLE 2: THE ASSOCIATIONS BETWEEN CLINICAL AND LABORATORY FACTORS AND THE TRANSFER OF MOSAIC EMBRYOS

	Transfe	Transfer of mosaic embryos	
	Yes (n=11)	No (n=6)	
Threshold for diagnosis of mosaicism			0.440
20-80%	6 (85.7)	1 (14.3)	
30-70%	3 (50.0)	3 (50.0)	
Unknown	2 (50.0)	2 (50.0)	
Annual IVF cycles			0.043
<1000	5 (45.5)	6 (54.5)	
≥1000	6 (100)	0 (0)	
Percentage of IVF cycles using PGT-A (%)			
Mean±SD	12.3±9.77	30.4±20.1	0.033
Practice type			0.661
University affiliated	4 (66.7)	2 (33.3)	
Academic	1 (33.3)	2 (66.7)	
Private	6 (75.0)	2 (25.0)	
Testing facility			0.099
Reference lab	10 (76.9)	3 (23.1)	
In house lab	1 (25.0)	3 (75.0)	
PGT-A routine screening			0.335
No	4 (50.0)	4 (50.0)	
Yes	7 (77.8)	2 (22.2)	

TABLE 3: ALL MANAGEMENT OPTIONS PROVIDED TO PATIENT BY CLINICS ACCORDING TO PGT-A BIOPSY RESULTS

	Biopsy Result		
Management Option	Aneuploid	Inconclusive	Mosaic
Discard	75%	15%	28%
Donate	50%	10%	11%
Rebiopsy	15%	45%	22%
Transfer	10%	60%	39%

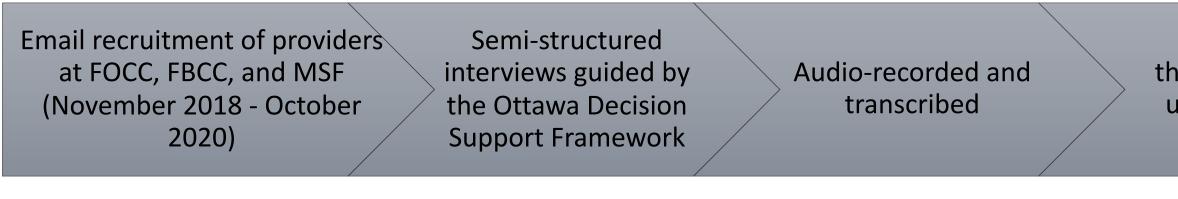
TABLE 4: FOLLOW-UP GENETIC TESTING AFTER MOSAIC EMBRYO TRANSFER

	Follow-up genetic testing recommended	83%
	NIPT	73%
	CVS	33%
%	Amniocentesis	53%

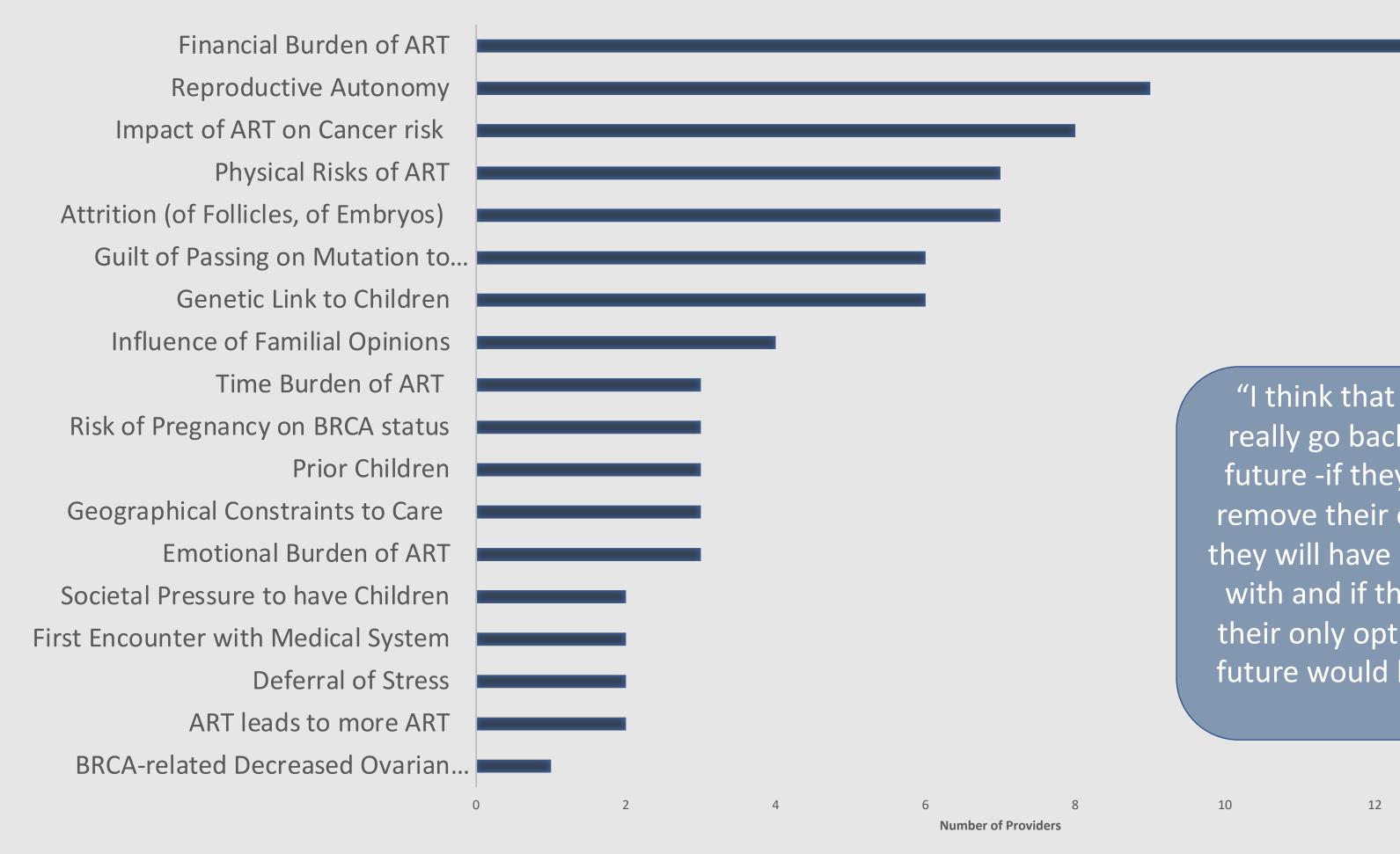
INTRODUCTION

- Women carrying the BRCA mutation are usually offered a risk-reducing salpingo-oophorectomy at age 35-40 to reduce their risk of breast and ovarian cancer
- Choosing amongst reproductive options in the context of a BRCA mutation discovery is a shared decision between patient and provider

* This article refers to "women" as people with internal reproductive organs; however we understand that not everyone with internal reproductive organs identifies as a woman and acknowledge that this information is relevant for anyone assigned female at birth irrespective of their gender identity


RATIONALE

 Prior studies have reported that patients feel unsupported in reproductive decision-making by their provider highlighting the potential role for improved decision support


AIM

 Assess decision-making needs of patients and providers when discussing reproductive options with female BRCA genetic mutation carriers prior to RRSO

METHODS

Figure 1 : Patient Considerations Impacting Reproductive Decision-Making

Figure 2 : Clinical Gaps and Suggested Clinical Modifications

Counselling time constraints	More time spent counselling	planned follow-up
Lack of reliable sources of background information	Provision of a population-specific background information sheet	
Time-sensitive, geographically accessible, centralized care	Early recognition of need for support and appropriate referral	unified information sheet
Lack of Psychosocial Support	connection with psychosocial care	

Positive Patients and Healthcare Providers*

E.S. Dason, MD, L. Drost, E.M. Greenblatt MD, A.S Scheer MD, J. Han BSc, MD, M. Sobel, MSc, MD, M. Jacobson MD, T. Doshi, E. Wolff, E. McMahon, RN, MN, C.A. Jones MD

thematic analysis using NVIVO 12

RESULTS

Demographics:

- 15 providers : REI physicians (4/15), REI fellows (3/15), general OB/GYNs (3/15), a gynecological oncologist (1/15), a nurse practitioner specializing in fertility preservation (1/15), a registered nurse at the FOCC (1/15), a genetic counsellor specializing in PGT (pre-implantation genetic testing) (1/15), and a genetic counsellor at FBCC specializing in BRCA genetic testing (1/15) **Key Points :**
- This is a complex decision due to inherent decision elements, modifiable decisional needs and voiced uncertainty (Figure 1)
- There were three major reproductive decisions (Box 1) with varied patient considerations impacting decision-making (Figure 2) Proposed decisional supports are identified in Figure 3

Three Major Reproductive Decisions : Do I want to have children? Do I want to take the chance of passing on this mutation? Do I want to carry a child?

"I think that knowing that they can't really go back on their decision in the future -if they decide to go ahead and remove their ovaries. The decision that they will have made, they'll have to stick with and if they made a mistake, then their only option for parenthood in the future would be either egg donation or adoption."

Finality of the decision

Young age – not considering reproduction yet

Scientifically uncertain outcomes

Multiple reproductive options competing with cancer prevention options

> Lack of access to expertise

"People do like to know 'what have most people in my situation done'. How many people nave come back to use what they've frozen, and how successful were they? We don't have a huge number of data or information for them on that... Certainly clinic specific freeze and thaw pregnancy rate data would be helpful. I don't have it. We have some but not enough. I don't think the numbers are great enough to make it an average to provide to patients."

Conclusion

- and patients
- Would not be well suited to a patient decision aid
- Decision Support Options :
- Population-specific informational material for both patients and providers developed (available upon request)
- Implementable clinical practice changes identified

Selected References

Quinn, G. P. et al. BRCA carriers' thoughts on risk management in relation to preimplantation genetic diagnosis and childbearing: when too many choices are just as difficult as none. *Fertility and Sterility* **94**, 2473–2475 (2010).

Kim, J., Skrzynia, C. & Mersereau, J. E. A Pilot Study of BRCA Mutation Carriers' Knowledge About the Clinical Impact of Prophylacticoophorectomy and Views on Fertility Consultation: A Single-Center Pilot Study. Journal of Genetic Counseling 24, 149–157 (2015).

Poprzeczny, A. J., Stocking, K., Showell, M. & Duffy, J. M. N. Patient Decision Aids to Facilitate Shared Decision Making in Obstetrics and Gynecology: A Systematic Review and Meta-analysis. *Obstetrics & Gynecology* **135**, 444–451 (2020).

Hoefel, L. et al. 20th Anniversary Update of the Ottawa Decision Support Framework Part I: A Systematic Review of the Decisional Needs of People Making Health or Social Decisions. *Med Decis Making* 0272989X2093620 (2020) doi:10.1177/0272989X20936209.

Box 1 : Major Reproductive Decisions

"Do I think I'll ever use these eggs?' Some of them aren't sure or you know you can't tell me these eggs will definitely result in live birth so that makes it hard for people because I'm not going to put myself through potentially risky procedure even though the risk is quite low, less than 1% for infection or bleeding, but it's not 0. And you can't guarantee that there will be live birth from these eggs so some of them, that's a hard decision for them."

Perceived urgency due to shortened reproductive timeline

Outcomes and other features that patients value differently

Uncertainty of technology itself

Voiced

Uncertainty

fertility potential

Modifiable decisional needs

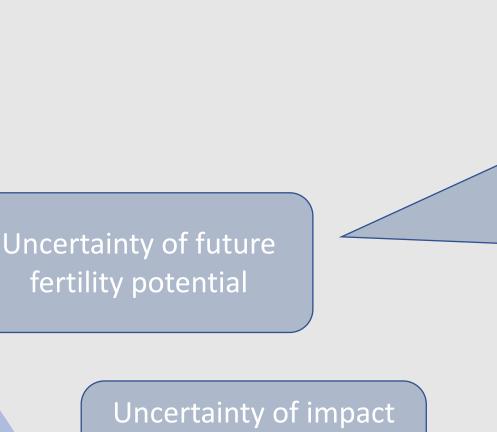
Inherent

Decision

Elements

Unrealistic

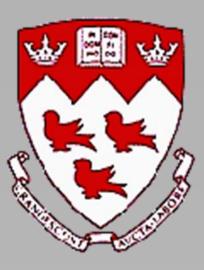
Siloed health information


Inability to understand information as it has been presented

Conflicting information from providers

Figure 1: Decisional Needs

• Highly complex decision requiring tailored decision support for both providers


"Well I think one of the things is that I always tell people just for any individual person, there's no test we can do that will act as a crystal ball to tell me whether that person will be able to conceive spontaneously in the future."

of treatment on cancer status

> Unsure where life will take them

Uncertainty of ART outcome

expectations of ART outcomes

McGill University

MUHC Reproductive

Center

The clinical outcomes of older and younger patients with different indications underwent Preimplantation genetic testing for aneuploidy (PGT-A) in one center

Introduction

Preimplantation genetic testing for aneuploidy (PGT-A) allows us to choose euploid embryos for transfer in order to increase live birth rates of IVF cycles, and to reduce the risks of adverse reproductive outcomes. Different group of patients with different indications may be recommended for PGT-A, such as recurrent implantation failure (RIF), recurrent miscarriages (RM), advanced maternal age (AMA), male factors and others with higher aneuploidy risks. The objective of this study was to evaluate the clinical outcomes of PGT-A in older and younger female patient groups with different indications in one center.

Material and methods

We retrospectively analyzed data obtained in 220 PGT-A cycles with older female age (38 or older, average age: 40.4), and 155 cycles with younger female age (37 or younger, average age: 34). The indications for PGT-A testing includes RM, RIF, AMA, male factor and others with higher aneuploidy risks. The PGT-A tests were done by FISH to detect 8 9 chromosomes (261 cycles) or NGS to detect all 23 sets of chromosomes (114 cycles). Embryos diagnosed as euploid were transferred on day4 or day5 after fertilization freshly for FISH testing, or frozen embryo replacement cycle (FERC) in the following month for NGS testing. The chromosome aneuploidy rate, implantation rate (IR), clinical pregnancy rate (CPR) and miscarriage rate were compared between older and younger female age groups. The study was approved by research ethics board of McGill University Health Center (MUHC).

Table 1. Clinical outcomes of female patients 37 years or younger underwent Preimplantation Genetic Testing for Aneuploidy (PGT-A)

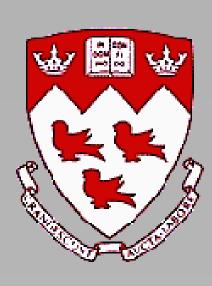
	RM	RIF	Others (male factor, infertility, miscarrage sexing, PGT-M)
No.cycle (patient)	55(45)	49(41)	51(35)
Average age	34	33.4	34.5
No. COC (per cycle)	1017(18.5)	872(17.8)	739(14.5)
No. Fert(%)	710(86.5%)	588(86%)	496(88%)
2PN	655	557	453
No. Em tested	463 (8.4)	399 (8.14)	311
Normal(%)	209 (47%)	159 (41.6%)	137 (48%)
Abnormal (%)	239 (53%) *	223 (58.4%) *	157 (52%) *
Cycles with ET	46 (4 cycles with no available embryo for ET; 5 cycles not ET yet)	42 (4 cycles with no available embryo for ET; 4 cycles not ET yet)	33 (1 cycle with no available embryo for ET; 17 cycles not ET yet)
No.Embryo transferred	99	113	73
No. Sac (IR)	35(35.4%)	24(21.3%)	25(34.2%)
CPR/Cycle	46%	37%	37%
CPR/ET cycle	54.30%	43%	58%
Miscarrage rate	16% (4/25)	16.7% (3/18)	15.8% (3/19)

* p < 0.001 when compared: RM with younger female age vs RM+AMA; RIF with younger female age vs RIF+AMA; Others with younger female age vs AMA only

Xiao Yun Zhang¹, Jin-Tae Chung¹, William Buckett¹, Asangla Ao^{1,2}

1. McGill University Health Center (MUHC) Reproductive Center, 2. Departments of Human Genetics and Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada

There was significantly higher aneuploidy rate in older patients with RM and RIF compared to younger patients groups (RM: 70.6% vs 53%; RIF: 68.7% vs 58%. p<0.001), however, there was no significant difference of IR in both groups (RM: 26.6% vs 35.4%, p=0.18; RIF: 17.9% vs 21.3%, p=0.51), and no significant difference of CPR/ET cycle(RM: 37.3%) vs 54.3%, p=0.09; RIF: 28.9% vs 42.9%, p=0.17) and CPR/Cycle (RM: 32.8% vs 45.5%, p=0.16; RIF: 25% vs 37%, p=0.19). Similar pattern was observed when compared "AMA only" and "Others" in the younger patients group. There were more oocytes retrieved per cycle from RM patients with younger age compared to the older age patients (18.5 vs 13.4) which resulted in a similar trend in the number of embryos being tested (8.4 vs 6.6). The number of oocytes retrieved from RIF patients in different age groups was similar. (Table 1 and Table 2)


There was no difference in chromosome abnormality rate among RIF, RM and other groups within the younger age group. A similar result was observed in the older age group (\geq 38 yr.) within RIF, RM and AMA only indications. However, the aneuploidy rate was significantly higher in older age group of all indications when compared to the younger age counterpart. This suggests that this increase in aneuploidy rate is only age-related. Following PGT-A, no difference in CPR,IR, or miscarriage rate was observed in younger and older age groups of all indications suggesting that PGT-A eliminates the negative impact of maternal age on clinical outcomes.

RM+AMA RIF+AMA No.cycle (patient) 58(36) 53(30) 40.45 40.3 Average age No. COC (per cycle) 781(13.46) 869(16.4) No. Fert(%) 547(83%) 641(85%) 481 No. Em tested 383 (6.6) 451 (8.51) 106(29.4%) Normal(%) 134(31.3%) 294(68.7%) * 255(70.6%)³ Abnormal (%) 45(2 cycles with no avail Cycles with ET 51(7 cycles not ET yet) cycles not ET yet) **No.Embryo transferred** 22(17.9%) 25(26.6%) No. Sac (IR) CPR/Cycle 32.80% 25% 28.90% **CPR/ET cycle** 37.30% 30.7% (4/13) Miscarrage rate 31.5% (6/19)

* p < 0.001 when compared: RM with younger female age vs RM+AMA; RIF with younger female age vs RIF+AMA; Others with younger female age vs AMA only

Results

Conclusion

McGill University

MUHC Reproductive Center

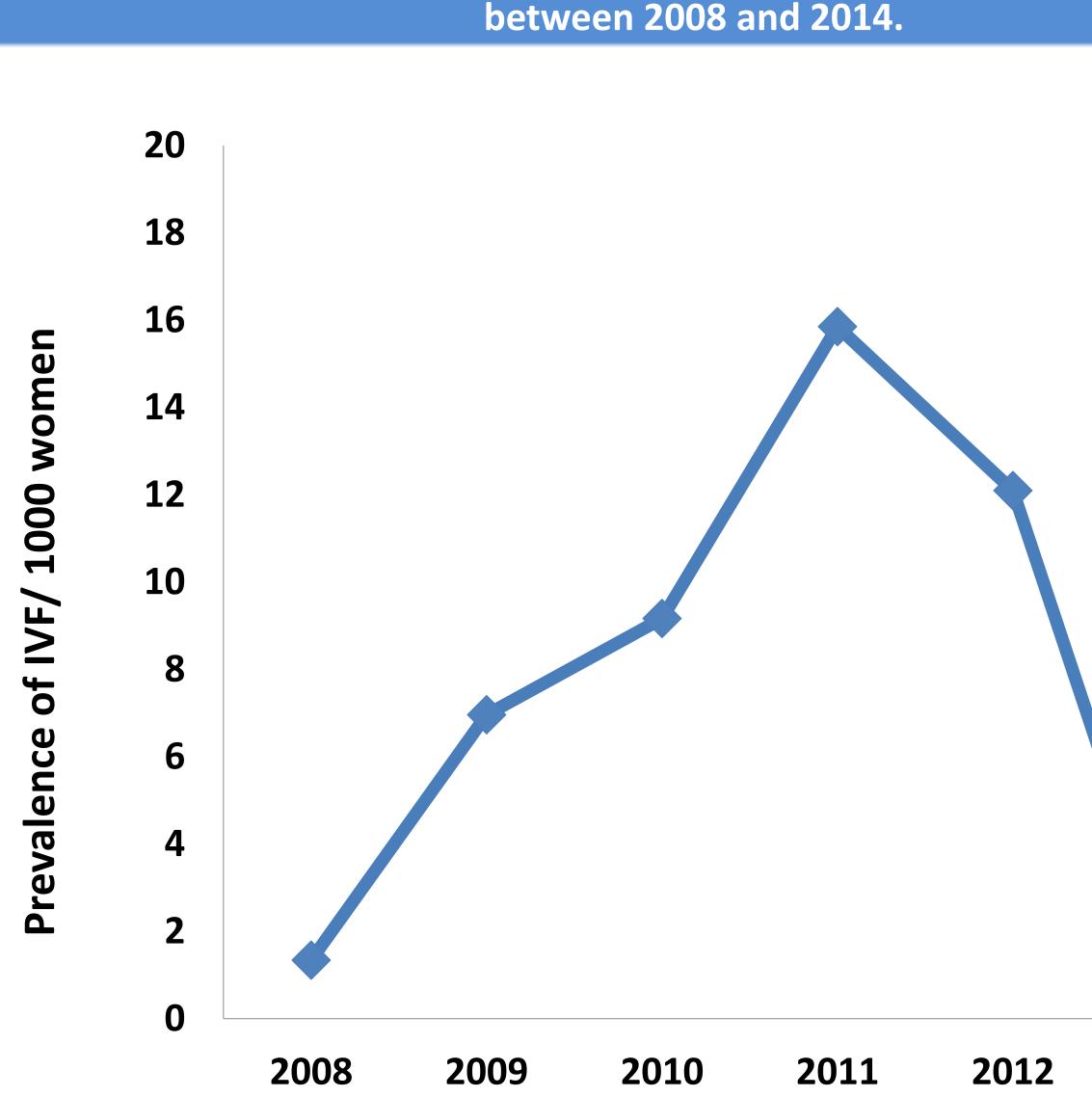
	RM+AMA	RIF+AMA	AMA only
No.cycle (patient)	58(36)	53(30)	109(79)
Average age	40.45	40.3	40.67
No. COC (per cycle)	781(13.46)	869(16.4)	1859(17)
No. Fert(%)	547(83%)	641(85%)	1242(85.7%)
2PN	481	599	1143
No. Em tested	383 (6.6)	451 (8.51)	818
Normal(%)	106(29.4%)	134(31.3%)	218(27%)
Abnormal (%)	255(70.6%) *	294(68.7%) *	589(73%) *
Cycles with ET	51(7 cycles not ET yet)	45(2 cycles with no available embryo for ET; 6 cycles not ET yet)	81(16 cycles with no available embryo for ET; 12 cycles not ET yet)
No.Embryo transferred	94	123	158
No. Sac (IR)	25(26.6%)	22(17.9%)	42(26.6%)
CPR/Cycle	32.80%	25%	29.40%
CPR/ET cycle	37.30%	28.90%	40%
Miscarrage rate	31.5% (6/19)	30.7% (4/13)	15.6% (5/32)

How does advanced age interact with the requirement for IVF on pregnancy complications?

¹ Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, McGill University, Montréal Quebec H3A 0G4, Canada ² Division of Maternal-Fetal Medicine, Obstetrics & Gynecology Department, University of Tabok, Saudi Arabia

INTRODUCTION

- Due to changing social trends, women are delaying childbearing time in pursuit of higher education, financial stability, and partne
- Age is a risk factor for pregnancy complications. Women at leas increased risk of many issues, including hypertensive disorders, placentation abnormalities, abruption, blood transfusion, cesai demise, among others.
- The need for IVF to conceive is also a risk factor for pregnancy cor


OBJECTIVE

To evaluate the risks in IVF pregnancies in women 38-43 y retrospective population database.

MATERIALS AND METHODS

- We used the Health Care Cost and Utilization Project-Nationwic database from 2008 to 2014, inclusive to generate a list of uniqu women aged 38-43 years old.
- Women who underwent IVF were compared to the rest of the Multivariate logistic regression analysis was performed to comp regarding pregnancy, delivery, and neonatal outcomes after adj confounding factors

Figure 1. Prevalence of IVF among women Between 38 – 43 year

Ahmad Badeghiesh¹, Haitham Baghlaf², Micheal H Dahan^{1,}

	Chara
g to a more convenient ership formation.	
ast 38 years old are at	Race
s, gestational diabetes,	Whi
rean section and fetal	Blac
	Hisp
	Asia
omplications.	Nati
	Oth
	Incon
years of age, using a	Less
	\$39
	\$48
	\$63
	Plan
	Med
ide Inpatient Sample	Med
que deliveries in	Priv
cohort.	self
pare both groups	No
justing for plausible	Oth
	Previ
	Smok
	Chro
rs old, who gave birth	Prege
	Drug
	Thyro
	HIV
	Obe
	Multi
	Duri
	wome
	were
	• The
	(16.2% caesa
	5.2% ,
P= <0.0001	IVF. O
	Afte
	diabe
2013 2014	1.06-1
	1.16-1
	sectio

TABLE I: Table 1 Maternal Characteristics				
Characteristics	Spontaneous pregnancy N= 306805	Pregnancy from assisted reproduction N= 2762	P-value	
Race			<0.0001	
White	151752(54.7%)	1820 (69.0%)		
Black	31528 (11.4%)	165 (6.3%)		
Hispanic	52683(19.0%)	158(6.0%)		
Asian and Pacific	25651(9.3%)	347(13.2%)		
Native American	1512(0.5%)	10(0.4%)		
Other	14103(5.1%)	138(5.2%)		
Income quartiles			<0.0001	
Less than 39,000	53342(17.7%)	136(5.0%)		
\$39,000-47,999	60609(20.1%)	291(10.6%)		
\$48,000-62,999	76513(25.4%)	643(23.5%)		
\$63,000 or more	110516(36.7%)	1664(60.9%)		
Plan type			< 0.0001	
Medicare	2772(0.9%)	2(0.1%)		
Medicaid	78422(25.6%)	71(2.6%)		
Private insurance	208718(68.1%)	2604(94.3%)		
self-pay	9360(3.1%)	38(1.4%)		
No charge	466(0.2%)	0(0%)		
Other	6640(2.2%)	46(1.7%)		
Previous CS	82659(26.9%)	455(16.5%)	< 0.0001	
Smoking during pregnancy	10295(3.4%)	12(0.4%)	< 0.0001	
Chronic HTN	16090(5.2%)	117(4.2%)	0.018	
Pregestational DM	6193(2.0%)	43(1.6%)	0.086	
Drug use	2958(1.0%)	1(0.0%)	< 0.0001	
Thyroid disease	18637(6.1%)	447(16.2%)	< 0.0001	
HIV	98(0.0%)	0(0.0%)	1.000	
Obesity	159 (5.8%)	17166 (5.6%)	0.71	
Multiple gestation	8024(2.6%)	753(27.3%)	<0.0001	

RESULTS

ring the study period, 5,545,612 pregnant women were identified. Among these, 309,567 en were found to be 38-43 years old. The IVF group included 2,762 women, and there 306,805 controls.

IVF group was more likely to have private insurance, higher incomes, thyroid diseases % vs. 6.1%) & multiple gestations (27.3% vs. 2.6%) (p<0.0001 all cases). Previous rean sections (16.5% vs. 26.9%, p<0.0001), diagnosis of chronic hypertension (4.2% vs. p=0.02), and cigarette smoking (0.4% vs. 3.4%, p<0.0001) rates were lower among the Other baseline demographics did not differ.

er adjusting for confounding variables, the IVF group had a higher risk of: gestational etes (aOR 1.24, 95% CI 1.01-1.52), pregnancy-induced hypertension (aOR 1.31, 95% CI 1.62), placenta previa (aOR 2.37, 95% CI 1.55-3.61), preterm delivery (aOR 1.45, 95% CI 1.81), preterm premature rupture of membrane (aOR 2.26, 95% CI 1.57-3.25), caesarean section (aOR 1.84, 95% CI 1.55- 2.19), chorioamnionitis (aOR 2.08, 95% CI 1.41-3.08), maternal infection (aOR 1.90, 95% CI 1.31-2.77), postpartum hemorrhage (aOR 1.84, 95% CI 1.55-2.19), and. blood transfusion (aOR 1.85, 95% CI 1.25-2.73)

Small for gestational age (5.5% vs. 2.4%, OR 2.36, 95% CI 2.00-2.78) and congenital anomalies (1.2% vs. 0.5%, OR 2.25, 95% CI 1.60-3.17) occurred at a higher rate in women with IVF compared to controls. These did not differ when controlling for confounding effects (aOR 1.29, 95% CI 0.92-1.82) and (aOR 1.67, 95% CI 0.85-3.27). Intrauterine fetal demise did not differ between the groups (0.6% vs. 0.5%).

Outcomes
Pregnancy outcomes ^a
Pregnancy induced
hypertension
GDM
Placenta previa
Dellassa
Delivery outcomes ^b
PPROM
Ductours delivery
Preterm delivery
A bauatio ale conto
Abruptio placenta
Chorioamnionitis
Chonoannionitis
Operative vaginal
delivery
CS
Hysterectomy
rrystereetorry
PPH
Transfusion
Maternal infection
a- Pregnancy outcome
llee provious Caesaria

Use, previous Caesarian section, Chronic HTN, Smoking During Pregnancy, Thyroid disease and Multiple Gestation. b- Delivery Outcomes: adjusted by Race, Plan type, Hospital type, Income quartiles, Drug Use, previous Caesarian section, Chronic HTN, Smoking during Pregnancy, Thyroid disease, Multiple Gestation, Pregnancy induce HTN, Gestation DM and Placenta Previa.

IABLE III: Neonatal outcomes ^a							
Outcomes	Spontaneous pregnancy (%)	Pregnancy from assisted reproduction	Crude OR (95% CI)	Adjusted OR (95% CI)	Adjusted p-value		
		(%)					
SGA	7341(2.4%)	151(5.5%)	2.359(1.999-2.784)	1.296(0.924-1.82)	0.133		
IUFD	1978(0.6%)	13(0.5%)	0.729(0.422-1.259)	0.264(0.037-1.89)	0.185		
Congenital Anomalies	1686(0.5%)	34(1.2%)	2.255(1.603-3.174)	1.671(0.854-3.27)	0.134		

a- Neonatal Outcomes: adjusted by Race, Plan type, Hospital type, Income quartiles, Drug Use, previous Caesarian section, Chronic HTN, Smoking during Pregnancy, Thyroid disease, Multiple Gestation, Pregnancy induce HTN, Gestation DM and Placenta Previa. CONCLUSIONS

Pregnancy from IVF in women 38-43 years of age induces an 80% to 120% increases in rates of many pregnancy complications.

Increased risks of hypertensive disorders and gestational diabetes were less pronounced.

Compared to previous published studies including younger patients, most pregnancy risks were substantially increased in the IVF patients of older age as compared to the age matched controls.

McGill Faculty of Medicine Faculté de Médecine de McGill

TABLE II: Pregnancy and delivery outcomes.					
Spontaneous	Pregnancy	Crude OR	Adjusted OR	Adjusted	
pregnancy N= 306805	from assisted reproduction N= 2762	(95% CI)	(95% CI)	p-value	
28583(9.3%)	429(15.5%)	1.790(1.614 - 1.985)	1.312(1.062- 1.621)	0.012	
40403(13.2%)	406(14.7%)	1.136(1.022- 1.263)	1.236(1.006- 1.518)	0.044	
4137(1.3%)	108(3.9%)	2.977(2.450- 3.617)	2.369(1.553- 3.614)	<0.0001	
4375(1.4%)	119(4.3%)	3.112(2.584- 3.749)	2.262(1.574- 3.250)	<0.0001	
24682(8.0%)	528(19.1%)	2.701(2.455 - 2.973)	1.446(1.156- 1.810)	0.001	
 4199(1.4%)	44(1.6%)	1.167(0.865- 1.574)	1.121(0.625- 2.010)	0.701	
4452(1.5%)	96(3.5%)	2.445(1.991- 3.004)	2.080(1.405- 3.080)	<0.0001	
18605(6.1%)	205(7.4%)		1.299(0.986- 1.712)	0.063	
141451(46.1%)	1807(65.4%)	2.212(2.044- 2.393)	1.844(1.553- 2.189)	<0.0001	
962(0.3%)	17(0.6%)	1.967(1.216- 3.183)	0.617(0.149-2.548)	0.504	
9826(3.2%)	213(7.7%)	, 2.525(2.193- 2.909)	1.684(1.266- 2.240)	<0.0001	
4548(1.5%)	96(3.5%)	, 2.391(1.947- 2.938)	, 1.846(1.246- 2.737)	0.002	
5357(1.7%)	105(3.8%)	, 2.224(1.826- 2.708)	, 1.904(1.310- 2.766)	0.001	

es: adjusted by Race, Plan type, Hospital type, Income quartiles, Drug

Patients' and Providers' Perspectives on Elective Egg Freezing Decision-Making

¹Department of Obstetrics & Gynaecology, University of Toronto ²Department of General Surgery, University of Toronto

Introduction

- Although elective egg freezing (EEF) has become increasingly popular, the details of discussion around EEF and how the providers should be patients and supported has yet to be fully explored.
- Prior studies have identified that the decision to undergo EEF is complex for patients¹ providers and the both supporting them², however a specific analysis of contributing factors is lacking.

Methodology

Participants were part of two populations selected by purposive and convenience sampling:

- individual Data included collection \bullet interviews with a semi-structured fluid interview guide.
- Interviews explored options and alternatives to EEF, factors influencing decision-making, decisional supports, and barriers.
- Interviews were recorded and transcribed verbatim and checked by a second investigator.
- Thematic analysis of the data included development of codes, concepts, categories and theories about the decision to undergo EEF.
- Iterative process was used until data saturation achieved.

Patients (n = 12)


Over 18, who had attended Mount Sinai Fertility and were considering/had considered EEF

L. Drost¹, E. S. Dason¹, J. Han¹, A. Scheer², E. Greenblatt¹, and C. A. Jones¹

Results

Themes

and providers perceive the purpose of EEF:

Patients desired to preserve whatever fertility they might have, and to defer the decision about childbearing to a later time.

Demographics

 Table 1. Participant Demographics

n (%)
N = 12
3 (25.0%)
8 (66.7%)
1 (8.3%)
5 (41.6%)
4 (33.3%)
1 (8.3%)
1 (8.3%)
1 (8.3%)
N = 13
4 (30.8%)
4 (30.8%)
5 (38.5%)
7 (53.8%)
6 (46.2%)
9 (69.2%)
2 (15.4%)
1 (7.7%)
1 (7.7%)
6 (46.2%)
3 (23.1%)
2 (15.4%)
2 (15.4%)

Conclusion

The decision to undergo EEF is complex and individual patient values play a significant role in the decision-making process. There is considerable disconnect between providers and patients in their views both on the goals of egg freezing and on the utility of ovarian reserve testing, and these should be addressed in discussions between providers and patients to improve shared decision-

References

Baldwin, K. et al. Journal of Psychotsomatic Obstetrics and Gynaecology 2019;40(2), 166-173. Yu, L. et al. *Human Reproduction* 2016;31(2), 403-411.

Background and Objective

Preimplantation genetic testing for single gene defects (PGT-M) allows couples at risk of hereditary disorders to selectively transfer unaffected embryos to the uterus, thereby to avoid the possibility of termination later in gestation. Myotonic dystrophy type 1 (DM1), Huntington's disease (HD) and Fragile X syndrome (FRAXA) are three monogenic diseases which are caused by so-called dynamic mutations. These mutations are caused by triplet repeats inside or in the vicinity of the gene which have the tendency to expand beyond the normal range thus disrupting the normal function of the gene. The objective of our study was to investigate the clinical outcome of these three triplet repeat disorders undergoing Preimplantation Genetic Testing (PGT-M) in a single fertility center.

Results

From 1998 to 2020, there were 26 PGT-M cycles carried out on 13 female patients carrier of DM expended repeats in the group of Myotonic Dystrophy, 22 PGT-M cycles carried out on 13 female patients in the group of Fragile X syndrome, and 9 PGT-M cycles carried out on 7 patients (5 male carrier and 2 female carrier) in the group of Huntington's Disease. The average age of female patients in the three groups were 33.6, 31.5 and 31.4 years, respectively. The numbers of cumulus oocyte complexes (COC), MII stage oocytes, and fertilized embryos were 14.6, 11.3, 8.8 and 13.8, 11.2, 9.6, and 17.6, 13.2, 12.2 for the three groups, respectively. There was no statistically significant difference among these three groups of patients in all above categories. The successful diagnosis rates for these three diseases were 94.5%, 95.7% and 96.7%, respectively. The clinical pregnancy rate per PGT-M cycle was 34.6%, 36.4% and 44.4%, respectively; the difference is not statistically significant. In addition, IVF/IVM serial vitrification was performed in another four PGT-M cycles on three FRAX patients, of whom two patients successfully became pregnant and babies were born.

Preimplantation genetic testing for triple repeat expansion disorders

Li Zhang¹, Shahram Teimourian¹, Gordon Hua³, Woon-Young Son¹, William Buckett,¹ Asangla Ao^{1,2}

¹ McGill University Health Centre (MUHC) Reproductive Center ,² Department of Human Genetics, ³ Department of Medicine, McGill University, Montreal, Quebec, Canada

Comparison of three triple repeat expansion disorders

Disease	DM1	FraX	HD
Embryo	logical and diagnostic aspects		
No. patients	13	13	7
No. cycles (PGD/IVF)	27/34	22/27	9/12
Female age	33.6±3.9	31.1±3.4	31.4±1.8
Range of female age	24-41	26-35	29-35
Total No. of oocytes collected	499	372	211
Average oocytes collected per IVF cycle	14.7±8.0	13.8±7.0	17.6±6.4
No. of oocytes of MII stage	388	302	159
Average oocytes of MII per IVF cycle	11.4±7.2	11.2±6.8	13.2±4.8
Oocyte maturation rate	77.8%	81.2%	75.4%
No. of fertilized oocytes	299	259	147
Average fertilized oocytes per IVF cycle	8.8±6.0	9.6±6.4	12.2±4.6
No. of embryos analyzed	191	162	91
No embryo analyzed per PGD cycle	7.1	7.4	10.1
No. of embryos successfully tested	181	155	88
Rate of embryo successfully tested	94.8%	95.7%	96.7%
No. of embryos unaffected	74	68	39
Abnormal allele transmission	58.0%	55.5%	55.7%
No. of embryos transferred	34	26	14
	Clinical Outcome		
No. patients	13	13	7
No. cycles (PGD/IVF)	27/34	22/27	9/12
No. of embryos transferred	34	26	14
No. PGD cycle with clinical pregnancies	10	8	4
Clinical pregnant rate per PGD cycle	37.0%	36.4%	44.4%
No. babies live born	6	7+1 ongoing	5

Materials and Methods

For IVF-PGT-M cycles, all female parents underwent standard ovarian stimulation procedure as practiced in our fertility clinic. Intracytoplasmic sperm injection (ICSI) was performed for all patients undergoing PGT-M to avoid sperm contamination thereby to decrease misdiagnosis rate. Embryo biopsy was performed on day 3 (blastomere biopsy) or day 5/day 6 (blastocyst biopsy) according to the embryo development. Fluorescence-based multiplex PCR was used for mutation analysis of single gene defects. Embryos diagnosed as unaffected were transferred on day 5/6 post-fertilization or were frozen for future transfer.

Conclusions

In spite of the ovarian dysfunction of Fragile X patients, the pregnancy rate of the three groups following IVF-PGT is similar. For those FRAX patients with severe ovarian dysfunction, IVM and/or IVF with serial vitrification is an option to achieve successful clinical outcome. The effect of DM1 on ovarian reserve and outcomes of ovarian stimulation in IVF/PGT cycles is controversial in the literature. According to the experience of our center, female DM1 patients with higher doses of gonadotropins can achieve similar clinical results. The clinical result for the three monogenetic diseases with dynamic mutation is not significantly different. A further study based on only female carriers of triplet repeat disorders for HD should be carried out to compare with FRAX patients. This study is also limited by its small sample size and retrospective design over a long period.

References

Sermon K, Seneca S, De Rycke M, Goossens V, Van de Velde H, De Vos A, Platteau P, Lissens W, Van Steirteghem A, Liebaers I. PGD in the lab for triplet repeat diseases - myotonic dystrophy, Huntington's disease and Fragile-X syndrome. Mol Cell Endocrinol. 2001 Oct 22; 183 Suppl 1:S77-85.

Fernández RM, Lozano-Arana MD, Sánchez B, Peciña A, García-Lozano JC, Borrego S, Antiroll G. Preimplantation Genetic Diagnosis for Myotonic Dystrophy Type 1 and Analysis of the Effect of the Disease on the Reproductive Outcome of the Affected Female Patients. Biomed Res Int. 2017; 2017:9165363.

Prevalence of antiphospholipid syndrome and live birth rate following anti-thrombotic treatment in a cohort of 1443 patients with recurrent pregnancy loss <u>Allyssa Hooper, MSc, BSc¹, Ulrike Mayer, PhD², Arianne Y.K. Albert, PhD², Mohamed A. Bedaiwy, MD, PhD³</u>

Background

- Antiphospholipid syndrome (APS) is a systemic autoimmune disorder resulting from persistent antiphospholipid antibodies (aPL) including lupus anticoagulant (LA), anti-beta-2 glycoprotein I (a β 2GPI), anti-cardiolipin (aCL), and antiphosphatidylserine (aPS).¹
- Clinical manifestations of APS include vascular thromboses and obstetrical complications including preterm birth, intrauterine growth restriction (IUGR), placental dysfunction, and recurrent pregnancy loss.²
- Recurrent pregnancy loss (RPL) is defined as the loss of two or more pregnancies prior to 12 weeks' gestation and occurs in approximately 1-2% of pregnant women. There are multiple etiologies of RPL, however APS and the presence of antiphospholipid antibodies has been shown to be present in up to 20% of women with recurrent miscarriages.^{3,4}
- Current treatment recommendations for patients with APS and RPL is antepartum administration of low-dose aspirin (LDA) and prophylactic lowmolecular weight heparin (LMWH). This has been shown to reduce miscarriage rates by 54%. Additional therapies for refractory obstetrical APS include prednisone and hydroxychloroquine (HCQ).^{1,5,6}

Hypothesis

Standard of care anti-thrombotic therapy of low-dose aspirin (LDA) and low-molecular weight heparin (LMWH) improves ongoing pregnancy beyond 10 weeks' gestation and live birth rate in women with APS and RPL.

Objectives

- The first aim of this study is to analyze the prevalence of APS and the antithrombotic treatment provided in a cohort of RPL patients.
- The second aim is to assess ongoing pregnancy beyond 10 weeks' gestation and live birth rate following anti-thrombotic and immunomodulatory treatments including LDA, LMWH, prednisone, and HCQ.

Study Design & Methods

- Retrospective cohort study of 1443 RPL patients.
- In order for patients to be eligible for analysis they required both a clinical and laboratory diagnosis of antiphospholipid syndrome (APS).

CLINICAL

1. Thrombosis **2.** Recurrent pregnancy loss = two or more pregnancy losses

LABORATORY

Presence of one or more antiphospholipid antibodies on initial testing and on confirmatory testing 12 weeks later **1.** Lupus anticoagulant (LA) **2.** Anticardiolipin antibody (aCL) **3.** Anti-Beta-2 glycoprotein ($a\beta 2GPI$) **4.** Antiphosphatidylserine (aPS)

¹Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada ²Women's Health Research Institute, Vancouver, BC, Canada ³Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, BC, Canada

Results

Of the 1443 charts reviewed, 76 patients (5.27%) tested positive for aPLs based on the above criteria.

Antiphospholipid Antibody (aPL)	Number of Patients	Percentage Among APS Patients (%)
Lupus Anticoagulant (LA)	59	77.6%
Anti-Cardiolipin (aCL)	17	22.4%
Anti-Beta-2 Glycoprotein I (aβ2GPI)	13	17.1%
Antiphosphatidylserine (aPS)	6	7.9%
Double Positive	11	14.5%
Triple Positive	3	3.9%

Table 1: Prevalence of antiphospholipid antibody positivity among cohort of 1443 patients diagnosed with recurrent pregnancy loss. Patients with double or triple positivity have an increased risk of thrombotic events.²

• Of the 76 patients who met both the clinical and laboratory criteria for APS, **39 patients** (51.3%) received anti-thrombotic treatment during pregnancy.

Anti-Thrombotic Therapy	Number of Patients	Percentage Among Treated Patients (%)
Low-Dose Aspirin (LDA)	13	33.3%
Low Molecular Weight Heparin (LMWH)	2	5.2%
LDA + LMWH	17	43.6%
LDA + Unfractionated Heparin (UFH)	3	8.0%
LDA + Hydroxychloroquine (HCQ)	1	2.6%
LDA + LMWH + UFH	1	2.6%
LDA + LMWH + HCQ	1	2.6%
LDA + LMWH + HCQ + Prednisone	1	2.6%

Table 2: Prevalence of anti-thrombotic treatment use among patients with APS and RPL. Combination of LDA and LMWH was the most common form of treatment, which is in keeping with the standard of care therapy.

• No significant differences in live birth rate (p=0.688) and pregnancy beyond 10 weeks gestational age (p=0.810) when comparing anti-thrombotic treated versus non-treated APS patients.

patients.	Odds Ratio	CI	р
Live birth	0.82	0.31 – 2.15	0.688
Pregnancy beyond 10 weeks	0.89	0.34 – 2.29	0.810

Table 3: Logistic regression analysis of live birth rates and pregnancy beyond 10 weeks gestation when comparing treated versus non-treated patients. Odds ratio for patients who received anti-thrombotic therapy. Live birth rate (n=73) and pregnancy beyond 10 weeks gestation (n=72).

References

- Chaturvedi, S., McCrae, K.R. (2017). Blood Reviews, 31(6): 406-417
- Garcia, D., Erkan, D. (2018). New England Journal of Medicine, 378(21): 2010-21. American Society for Reproductive Medicine. (2012). Fertility and Sterility, 98(5): 1103-11.
- Chetty, M., Duncan, W.C. (2018). OBGYN and Reproductive Medicine, 28(6): 164-70.

Empson, M., et al. (2005). *Cochrane Database Syst Rev,* 2: CD002859 Ford, H.B., et al. (2009). *Rev Obstet Gynecol*, 2: 76-83. Uthman, I., et al. (2019). Annals of the Rheumatic Diseases, 78(2): 155-61.

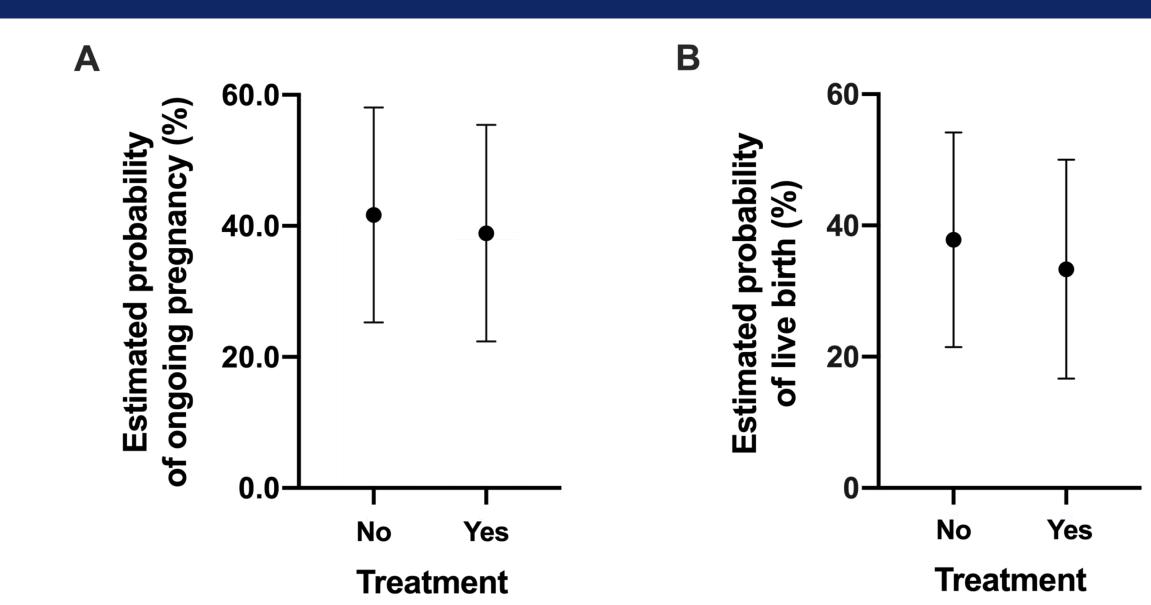


Figure 1: Anti-thrombotic treated versus non-treated APS patients. A) Predicted probability of ongoing pregnancy beyond 10 weeks gestation (n=72). B) Predicted probability of live birth (n=73). Error bars indicate 95% CI.

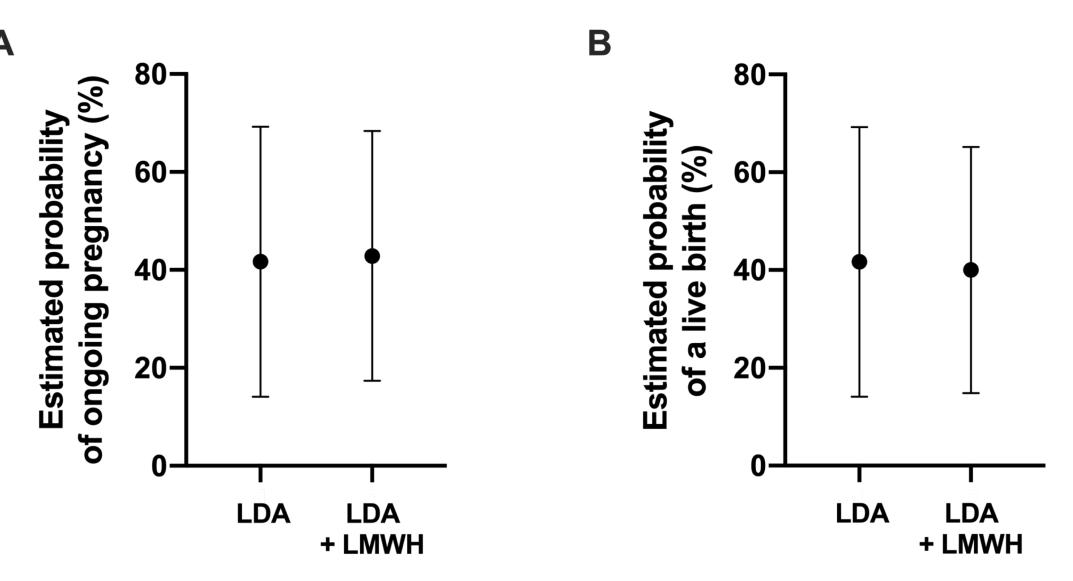


Figure 2: LDA vs LDA + LMWH treated APS patients. A) Predicted probability of ongoing pregnancy beyond 10 weeks gestation (n=30). B) Predicted probability of live birth (n=30). Error bars indicate 95% CI.

- predicted population prevalence.

- treatment during pregnancy.

WOMEN'S HEALTH **RESEARCH INSTITUTE** AT BC WOMEN'S

Results

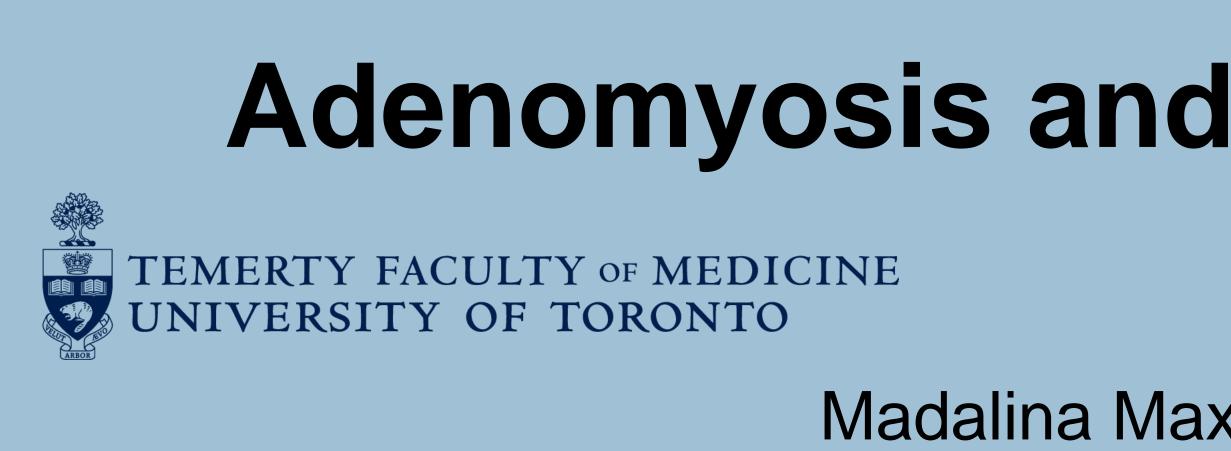
Discussion

• Prevalence of APS diagnosis in this RPL cohort to be in keeping with

Unfortunately, there is limited data for the use of additional therapies including HCQ and prednisone, therefore cannot be analyzed separately.

Conclusion

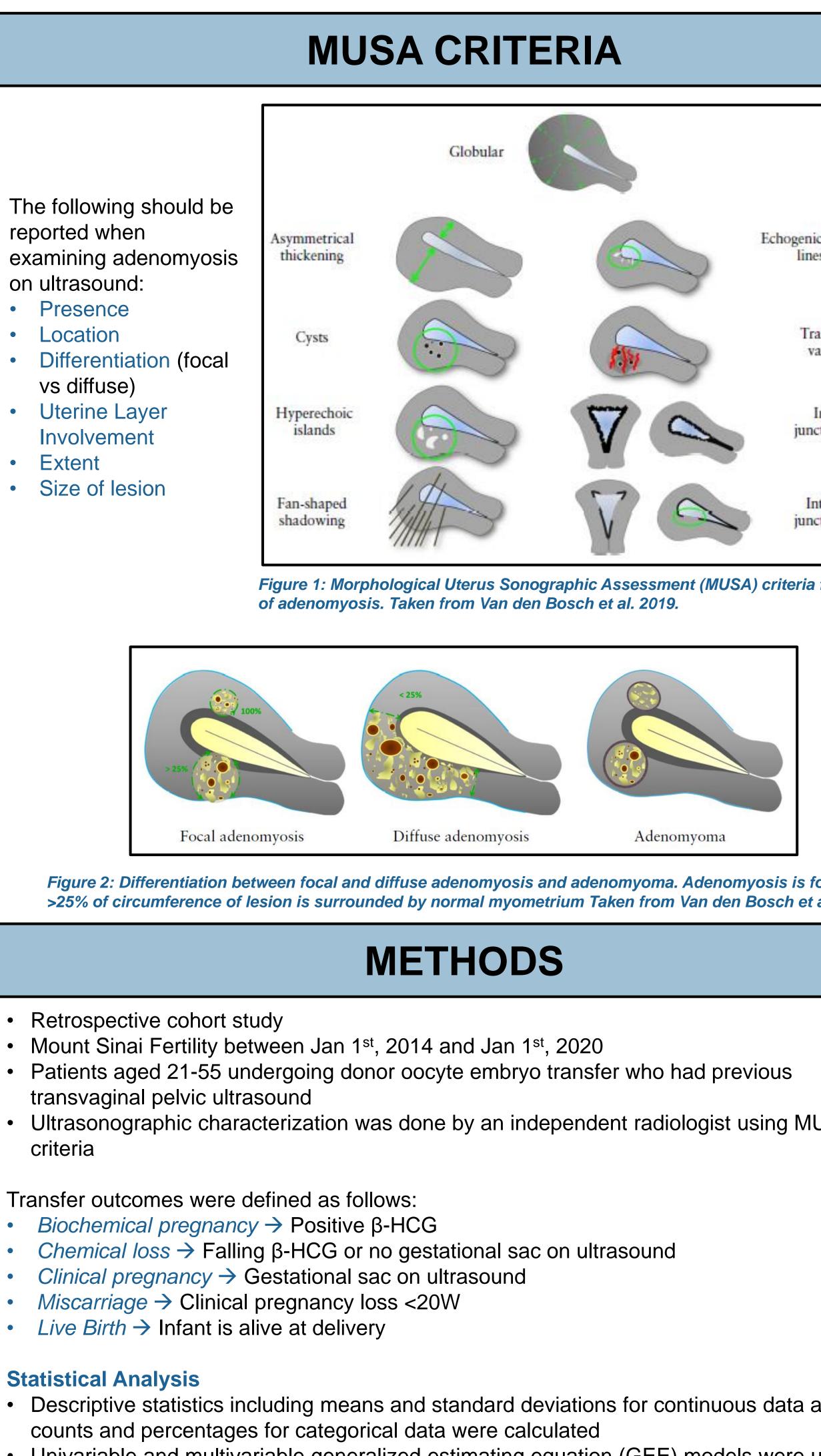
• 5.27% of patients met the clinical and laboratory criteria for APS diagnosis. • 51.3% of patients received anti-thrombotic or immunomodulatory


• No significant differences in live birth rate and pregnancy beyond 10 weeks gestation when comparing anti-thrombotic treatment versus no treatment and when comparing LDA versus LDA and LMWH.

Acknowledgements

Thank you to Ulrike and Arianne for your consultation on the statistics and to Dr. Bedaiwy for your mentorship and support during this project.

UBC THE UNIVERSITY OF BRITISH COLUMBIA **Department of Obstetrics & Gvna Department of Obstetrics & Gynaecology** Faculty of Medicine


- Adenomyosis is a benign gynecological condition where endometrial glands and str invade into the myometrium causing surrounding smooth muscle hyperplasia.
- Associated with multiple aspects of infertility, including recurrent pregnancy loss an implantation failure.

Diagnosis:

- Gold standard for diagnosis is by histologic assessment of uterine tissue from hyste
- There is no standard definition of adenomyosis on imaging • Morphological Uterus Sonographic Assessment (MUSA) criteria were developed in
- provide a standardized assessment of the condition through ultrasound imaging

Hypothesis:

• The presence of ultrasonographic signs of adenomyosis is associated with a lower rate, lower clinical pregnancy rate, and higher miscarriage rate in patients undergoin treatment with donor oocytes.

- Univariable and multivariable generalized estimating equation (GEE) models were assess differences in live birth rate (LBR), biochemical pregnancy rate (BPR), clinication pregnancy rate (CPR), or rate of miscarriage (MR) between presence vs. absence adenomyosis
- Live birth rate was the primary outcome of this study, and we achieved 80% power.

Adenomyosis and pregnancy outcome in patients undergoing assisted reproductive treatment with donor oocytes Sinai Health

Madalina Maxim¹, E. Shirin Dason², Alex Hartman³, Ella Huszti⁴, Qixuan Li⁴, Salina Kanji⁵, Mara Sobel⁵, Crystal Chan⁵ ¹ University of Toronto Temerty Faculty of Medicine; ² Department of Obstetrics and Gynecology, University of Toronto; ³ True North Imaging; ⁴ Biostatistics Research Unit, University Health Network; ⁵ Mount Sinai Hospital

		DE	EMOGRAPHIC
troma	Demographic Informa	ation	
nd	Subjects (n)	100	Gravida
	Transfers (n)	223	Para
	Age (mean (SD))	40.02 (4.84)	Adenomyosis (%)
erectomy	BMI (mean (SD))	26.44 (6.28)	Original Report
0040.1			Adenomyosis (%)
n 2018 to	Donor Age (mean (SD))	25.86 (3.10)	
	Indication (%)		
live birth	ARA/DOR/Menopause RIF/RPL	159 (71.3) 37 (16.6)	
ing	Tubal Factor	16 (7.2)	
	Genetic Factor	11 (4.9)	
	Table 1: Summary Table of Del	mographic Information	(per cycle)
			RES
	Adenor	nyosis (N=170)	
nic subendometrial		teristics	
nes and buds		ular enlarged ute nomyoma	erus 152 (* 4
		shaped shadowi	•
ranslesional vascularity		nmetrical thicken	0
		genic lines/buds	
Irregular		metrial Cysts	21 (
nctional zone		slesional Vascula erechoic/Echoger	
		ular/interrupted J	
interrupted actional zone	Uterine	Layer Involvem	ent
	Junc	tional Zone	66 (
a for diagnosis		lle Myometrium	89 (
	Oute	r Myometrium	15
	Table 3: Su	ummary Table for patie	nts with Adenomyosis (per cycle
	have at least one charac	teristic of adenom ar/interrupted junct	enomyosis prior to this stu yosis on ultrasound, and tl tional zone (JZ), a globular most common.
	PF	RIMARY OUT	COME: Number of
focal if t al. 2019.			
		Adjusted GE	E Model: Live Birth Out
		1 feature	
		2 or more fea	tures
			d multivariate analysis analysing or 2 or more characteristic on ultr
IUSA			
		S	pecific features do
		Univariate	GEE Model: Live Birth
		Globular Er	nlarged Uterus
and		Asymmetric	cal Thickening
used to		Myometrial	Cysts
cal		Irregular JZ	
of			
		Table 5: Univariat	e analysis examining live birth or

CINFORMATION

1.35 (1.45)
0.32 (0.65)
170 (76.2)
50 (22.4)

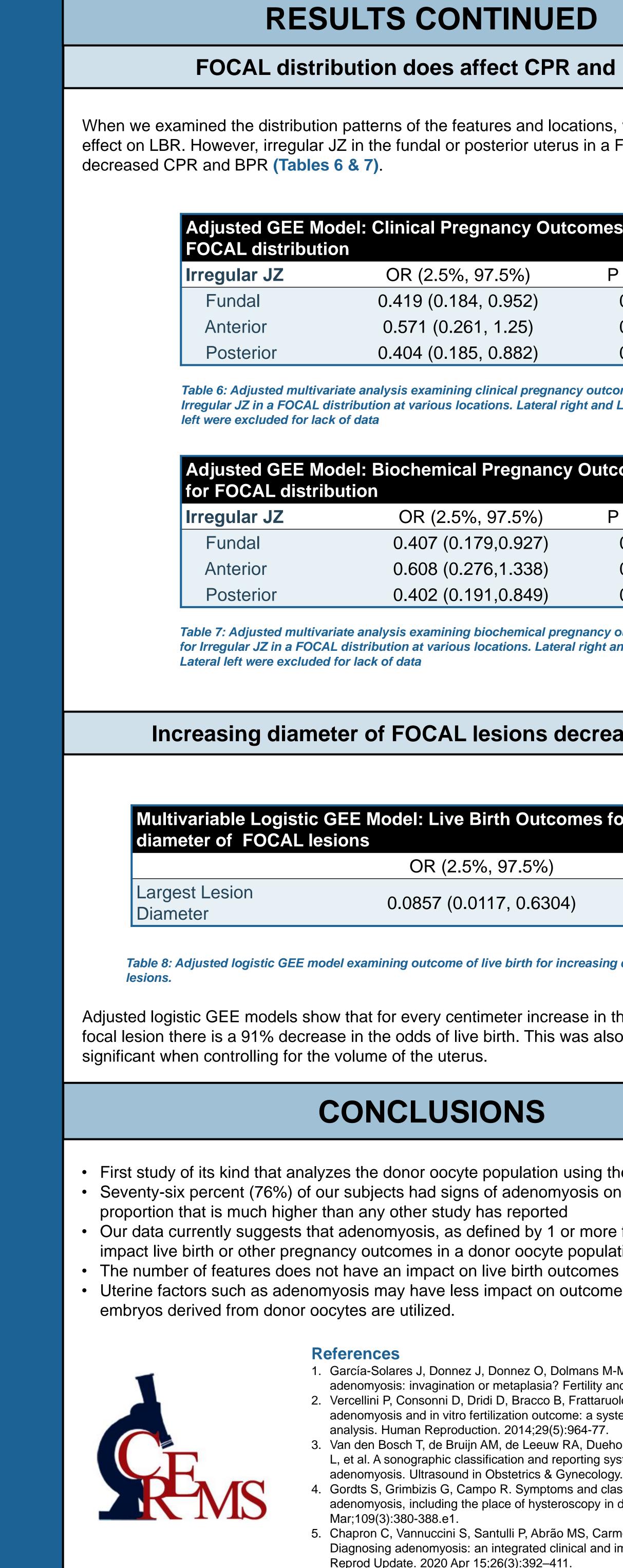
Transfer Outcome (N=223)	n (%)
Biochemical Pregnancy	120 (53.8)
Chemical Loss	26 (11.7)
Clinical Pregnancy	94 (42.2)
Miscarriage	27 (12.1)
Before heartbeat	10 (4.5)
After heartbeat	17 (7.6)
Live Birth	66 (29.6)
Singletons	64 (28.7)
Multiples	2 (0.9)

 Table 2 : Summary Table of Transfer Outcomes (per cycle)

ULTS

n(%)		n(%)
	Disease Location	
(89.4)	Anterior	145 (85.9)
(2.6)	Posterior	146 (85.9)
(0.6)	Lateral Right	130 (76.5)
(60.6)	Lateral Left	127 (74.7)
(1.2)	Fundal	160 (94.1)
12.4)		
0 (0)		
(1.2)		
(100)		
	Disease Extent	
(38.8)	Mild	81 (47.6)
(52.4)	Moderate	73 (42.9)
(8.8)	Severe	16 (9.4)

udy. Using MUSA criteria, 76 of the study subjects were identified to these subjects represented 170 cycles (Table 3). The most common [•] enlarged uterus, and asymmetrical thickening. Mild disease that


features does not affect live birth

comes for Adenomyosis				
OR (2.5%, 97.5%)	P value			
0.668 (0.1, 4.449)	0.68			
1.117 (0.457, 2.731)	0.81			

live birth outcomes for patients with adenomyosis, asound

o not affect live birth

outcome for four features of adenomyosis.

Mount Sinai Hospital Joseph & Wolf Lebovic Health Comple

TRUE NORTH))

RESULTS CONTINUED

FOCAL distribution does affect CPR and BPR

When we examined the distribution patterns of the features and locations, we did not see an effect on LBR. However, irregular JZ in the fundal or posterior uterus in a FOCAL distribution decreased CPR and BPR (Tables 6 & 7).

Adjusted GEE Model: Clinical Pregnancy Outcomes for FOCAL distribution			
Irregular JZ	OR (2.5%, 97.5%)	P value	
Fundal	0.419 (0.184, 0.952)	0.04	
Anterior	0.571 (0.261, 1.25)	0.16	
Posterior	0.404 (0.185, 0.882)	0.02	

Table 6: Adjusted multivariate analysis examining clinical pregnancy outcome for Irregular JZ in a FOCAL distribution at various locations. Lateral right and Lateral left were excluded for lack of data

Adjusted GEE Model: Biochemical Pregnancy Outcomes for FOCAL distribution			
Irregular JZ	OR (2.5%, 97.5%)	P value	
Fundal	0.407 (0.179,0.927)	0.03	
Anterior	0.608 (0.276,1.338)	0.22	
Posterior	0.402 (0.191,0.849)	0.02	

Table 7: Adjusted multivariate analysis examining biochemical pregnancy outcome for Irregular JZ in a FOCAL distribution at various locations. Lateral right and Lateral left were excluded for lack of data

Increasing diameter of FOCAL lesions decreases LBR

ultivariable Logistic GEE Model: Live Birth Outcomes for largest ameter of FOCAL lesions				
	OR (2.5%, 97.5%)	P value		
rgest Lesion	0.0857 (0.0117, 0.6304)	0.02		

Table 8: Adjusted logistic GEE model examining outcome of live birth for increasing diameter of focal

Adjusted logistic GEE models show that for every centimeter increase in the diameter of a focal lesion there is a 91% decrease in the odds of live birth. This was also shown to be significant when controlling for the volume of the uterus.

CONCLUSIONS

• First study of its kind that analyzes the donor oocyte population using the new MUSA criteria • Seventy-six percent (76%) of our subjects had signs of adenomyosis on ultrasound, a proportion that is much higher than any other study has reported

• Our data currently suggests that adenomyosis, as defined by 1 or more features, does not impact live birth or other pregnancy outcomes in a donor oocyte population

Uterine factors such as adenomyosis may have less impact on outcomes when high quality embryos derived from donor oocytes are utilized.

References

- I. García-Solares J, Donnez J, Donnez O, Dolmans M-M. Pathogenesis of uterine adenomyosis: invagination or metaplasia? Fertility and sterility. 2018;109(3):371-9 2. Vercellini P, Consonni D, Dridi D, Bracco B, Frattaruolo MP, Somigliana E. Uterine adenomyosis and in vitro fertilization outcome: a systematic review and metaanalysis. Human Reproduction. 2014;29(5):964-77.
- . Van den Bosch T, de Bruijn AM, de Leeuw RA, Dueholm M, Exacoustos C, Valentin L, et al. A sonographic classification and reporting system for diagnosing adenomyosis. Ultrasound in Obstetrics & Gynecology. 2018
- . Gordts S, Grimbizis G, Campo R. Symptoms and classification of uterine adenomyosis, including the place of hysteroscopy in diagnosis. Fertil Steril. 2018 Mar:109(3):380-388.e1.
- 5. Chapron C, Vannuccini S, Santulli P, Abrão MS, Carmona F, Fraser IS, et al. Diagnosing adenomyosis: an integrated clinical and imaging approach. Hum Reprod Update. 2020 Apr 15;26(3):392–411.